Practice Midterm 2

Student ID :

Name :

24xxxxxx

Dong Gyu Lim

Problem	Score
1	$/ \triangle$
2	$/ \triangle$
3	$/ \triangle$
4	$1 \triangle$
5	$/ \triangle$
6	$/ \triangle$
Total	$/ 60$

Problem 1

Decide if the following statements are always true or sometimes false. JUSTIFY your ANSWER.
a) Every orthogonal set is a linearly independent set.

FALSE when you have the zero space $\{\mathbf{0}\}$.
b) Two diagonalizable matrices A and B are similar if they have the same eigenvalues, counting multiplicities.

TRUE because A 's diagonalization is similar to B 's diagonalization. Note that they are just differ by some permutation of diagonal entries.
c) If A^{3} is diagonalizable, then A is diagonalizable as well.

$$
\text { FALSE when } A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text {. }
$$

d) If A^{3} is diagonalizable, then there exists diagonalizable B such that $A^{3}=B^{3}$.

TRUE because $A^{3}=P D P^{-1}$ for some invertible P and diagonal D. In particular, if $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, set $D_{1 / 3}=\operatorname{diag}\left(\lambda_{1}^{1 / 3}, \cdots, \lambda_{n}^{1 / 3}\right)$. Then, $D_{1 / 3}^{3}=D$ so that B defined by $P D_{1 / 3} P^{-1}$ satisfies $A^{3}=B^{3}$.
e) Let A be a $n \times n$ matrix. If the sum of entries in a column is zero for each column, then 0 is an eigenvalue of A.

TRUE because every column then lives in $x_{1}+\cdots+x_{n}=0$, which is an $(n-1)$ dimensional space. The number of columns is n, so they should be linearly dependent. So, A is not invertible and 0 is an eigenvalue.
f) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are vectors in \mathbb{R}^{n}. If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ is an orthonormal set, then it is a basis for \mathbb{R}^{n}.

TRUE because an orthonormal set is a linearly independent set and there are n vectors in \mathbb{R}^{n} (n-dimensional space).
g) If A and B are $n \times n$ invertible matrices, then $A B$ is similar to $B A$.

TRUE because $A B=A B A A^{-1}$.

Problem 2

Define a linear transformation T from \mathbb{P}_{2} to \mathbb{P}_{2} as follows.

$$
T(p(t))=3 p(t)-t p^{\prime}(t)
$$

a) Let \mathcal{E} be the standard basis for \mathbb{P}_{2}. Find the \mathcal{E}-matrix for T. $T(1)=3, T(t)=2 t, T\left(t^{2}\right)=t^{2}$, so the matrix is

$$
[T]_{\mathcal{E}}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

b) Is it possible to find a basis \mathcal{B} for \mathbb{P}_{2} such that

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ?
$$

No since then T 's eigenvalues will be $1,1,1$. However, we have already seen that T in fact have eigenvalues 1,2 , and 3 .

Problem 3

Let A be

$$
\left[\begin{array}{ccc}
3 & -4 & -4 \\
2 & 1 & -4 \\
-2 & 0 & 5
\end{array}\right]
$$

whose characteristic polynomial $\chi_{A}(\lambda)$ is $-(\lambda-1)(\lambda-3)(\lambda-5)$.
a) Find 3 linearly independent eigenvectors and, using them, find a diagonal matrix D and an invertible matrix P such that

$$
P^{-1} A P=D
$$

As usual, you need to find the null spaces of $A-I, A-3 I$, and $A-5 I$. In fact,

$$
\begin{aligned}
& \operatorname{Nul}(A-I)=\text { Span }\left\{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\} \\
& \operatorname{Nul}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\} \\
& \operatorname{Nul}(A-5 I)=\operatorname{Span}\left\{\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

So, $P=\left[\begin{array}{ccc}2 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$ and $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$ works for $P^{-1} A P=D$.
b) Find all possible D 's. For each D, find one corresponding invertible matrix P such that $P^{-1} A P=D$.

Because P 's columns are always eigenvectors, D 's entries also should be all zero but eigenvalues on diagonal. So, possible D 's are the matrices : $\operatorname{diag}(1,3,5)$, $\operatorname{diag}(1,5,3)$, diag $(3,1,5)$, $\operatorname{diag}(3,5,1)$, diag $(5,1,3)$, and diag $(5,3,1)$. Corresponding P 's could be matrices obtained by changing positions of columns.

Problem 4

1) Let T be a linear transformation from V to W. For bases \mathcal{B} of V and \mathcal{C} of W, let the matrix for T relative to \mathcal{B} and \mathcal{C} be

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Which of the following matrices could be a matrix for T (possibly, choosing different \mathcal{B}^{\prime} and \mathcal{C}^{\prime} from \mathcal{B} and \mathcal{C})?
a) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
e) $\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right]$

Basically, the matrix given above, as a linear transformation, has 2-dimensional range, so all the matrices having 2-dimensional range can be a matrix for T with an appropriate choice of \mathcal{B} and \mathcal{C}. The answer is a), b), c), e).
2) Which of the following matrices are similar to

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] ?
$$

a) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & -1 & 0 \\ -1 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]$
e) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Two similar matrices should have the same eigenvalues, counting multiplicities. So, only possibilities are c), d), e). However, the given matrix is not diagonalizable since the eigenspace associated with $\lambda=1$ has dimension 1. But, d), e) are diagonalizable. However, a diagonalizable matrix is never similar to a non-diagonalizable matrix. So, only c) is possible. And, in fact, $P=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ gives $P^{-1} A P=B$ where A is the given matrix and B is c). The answer is c).
3) Which of the following sets are orthogonal?
a) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}5 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 5\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}-3 \\ 2 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$
e) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5 \\ 2\end{array}\right],\left[\begin{array}{c}6 \\ -1 \\ -11 \\ 6\end{array}\right]\right\}$

The answer is $\mathbf{a}), \mathbf{b}), \mathbf{c}$.

Problem 5

Consider

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right]
$$

Note that they are orthogonal to each other and let W be the span of $\{\mathbf{u}, \mathbf{v}\}$.
a) Define a linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} as the orthogonal projection

$$
T(\mathbf{x})=\operatorname{proj}_{W}(\mathbf{x})=\frac{\mathbf{u} \cdot \mathbf{x}}{3} \mathbf{u}+\frac{\mathbf{v} \cdot \mathbf{x}}{3} \mathbf{v}
$$

Let's denote the \mathcal{E}-matrix of T by $[T]$. (\mathcal{E} is the standard basis for \mathbb{R}^{4}.) Find eigenvalues of $[T]$.

$$
T\left(e_{1}\right)=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
0 \\
1 / 3
\end{array}\right] \quad T\left(e_{2}\right)=\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
-1 / 3 \\
0
\end{array}\right] \quad T\left(e_{3}\right)=\left[\begin{array}{c}
0 \\
-1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \quad T\left(e_{4}\right)=\left[\begin{array}{c}
1 / 3 \\
0 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

So,

$$
[T]=\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & -1 / 3 & 0 \\
0 & -1 / 3 & 2 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 1 / 3
\end{array}\right]
$$

Let $T(\mathbf{x})=\lambda \mathbf{x}$ for some $\lambda \in \mathbb{R}$ and nonzero $\mathbf{x} \in \mathbb{R}^{4}$. Then, $\operatorname{proj}_{W}(\mathbf{x})=\lambda \mathbf{x}$. Recall that $\mathbf{x}=\left(\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x})\right)+\operatorname{proj}_{W}(\mathbf{x})$ and $\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x}) \perp \operatorname{proj}_{W}(\mathbf{x})$. Unless $\lambda=0, \mathbf{x}-\operatorname{proj}_{W}(\mathbf{x}) \perp \mathbf{x}$ by multiplying $1 / \lambda$ to $\lambda \mathbf{x}$. So, $\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x}) \perp \mathbf{x}-\operatorname{proj}_{W}(\mathbf{x})$ so that $\mathbf{x}-\operatorname{proj}_{W}(\mathbf{x})=0$. In such a case $\mathbf{x} \in W$ already, so $T(\mathbf{x})=\mathbf{x}$ so that $\lambda=1$. So, eigenvalues are 1 and 0 .
b) Is the matrix $[T]$ diagonalizable?

Yes, because Nul $[T]$ contains $\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -1\end{array}\right]$ and $\operatorname{Nul}([T]-I)$ contains $\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0\end{array}\right]$. So, there are 4 linearly independent eigenvectors so that $[T]$ is diagonalizable. In particular, it is

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Problem 6^{1}

Let W be a subspace of \mathbb{R}^{n}. Given an orthogonal basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{m}\right\}$ for W, recall that the formula of the orthogonal projection of $v \in \mathbb{R}^{n}$ onto W is given by

$$
\frac{\mathbf{b}_{1} \cdot v}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}+\cdots+\frac{\mathbf{b}_{m} \cdot v}{\mathbf{b}_{m} \cdot \mathbf{b}_{m}} \mathbf{b}_{m} .
$$

Let's denote this by $\operatorname{proj}_{W, \mathcal{B}}(v) .{ }^{2}$
a) Show that $v-\operatorname{proj}_{W, \mathcal{B}}(v)$ is orthogonal to $\operatorname{proj}_{W, \mathcal{B}}(v)$. Also, prove that $v-\operatorname{proj}_{W, \mathcal{B}}(v) \in W^{\perp}$. ${ }^{3}$ Let's first check $v-\operatorname{proj}_{W, \mathcal{B}}(v)$ is orthogonal to each of \mathbf{b}_{i} 's.

$$
\left(v-\operatorname{proj}_{W, \mathcal{B}}(v)\right) \cdot \mathbf{b}_{i}=v \cdot \mathbf{b}_{i}-\operatorname{proj}_{W, \mathcal{B}}(v) \cdot \mathbf{b}_{i} .
$$

However, $\operatorname{proj}_{W, \mathcal{B}}(v) \cdot \mathbf{b}_{i}$ is $\frac{\mathbf{b}_{i} \cdot v}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \mathbf{b}_{i} \cdot \mathbf{b}_{i}$ because only i th term is effective since \mathbf{b}_{j} 's are orthogonal to each other. So, $v-\operatorname{proj}_{W, \mathcal{B}}(v)$ is orthogonal to each \mathbf{b}_{i} 's. So is to any linear combination of them so that is to W. Note that $\operatorname{proj}_{W, \mathcal{B}}(v)$ is in W. Hence, we get the results.

[^0]b) Let $\mathcal{C}=\left\{\mathbf{c}_{1}, \cdots, \mathbf{c}_{m}\right\}$ be another orthogonal basis for W. ${ }^{4}$ Prove that ${ }^{5}$
$$
\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v) \in W^{\perp}
$$

Note that $v-\operatorname{proj}_{W, \mathcal{B}}(v) \in W^{\perp}$ by a). With the same argument, we have $v-\operatorname{proj}_{W, \mathcal{C}}(v) \in W^{\perp}$. However, W^{\perp} is a vector space, so

$$
\left(v-\operatorname{proj}_{W, \mathcal{B}}(v)\right)+(-1)\left(v-\operatorname{proj}_{W, \mathcal{C}}(v)\right) \in W^{\perp}
$$

c) Assume that there is no nonzero vector v such that $v \in W$ and $v \in W^{\perp}$ at the same time, without a proof. Using this fact, prove that

$$
\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v)=0
$$

By definition, $\operatorname{proj}_{W, \mathcal{B}}(v) \in W$ and so is $\operatorname{proj}_{W, \mathcal{C}}(v)$. Because W is a subspace (so, a vector space), we have

$$
\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v) \in W .
$$

Combining with the result of b), we get $\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v) \in W$ and $\in W^{\perp}$ at the same time. So, $\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v)=0$ by the fact that $v \in W$ and $v \in W^{\perp}$ implies $v=0$.

Therefore,

$$
\operatorname{proj}_{W, \mathcal{B}}(v)=\operatorname{proj}_{W, \mathcal{C}}(v) .
$$

So, we can conclude that the formula of the orthogonal projection does not depend on the choice of an orthogonal basis.

Remark. Why does $v \in W$ and $v \in W^{\perp}$ at the same time imply $v=0$?
If then, $v \cdot v=0$ because $v \in W$ and $v \in W^{\perp}$. However, $\|v\|^{2}=0$ implies $v=0$.

[^1]
[^0]: ${ }^{1}$ This problem is designed to prove that the formula for the orthogonal projection,

 $$
 \frac{\mathbf{b}_{1} \cdot v}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}+\cdots+\frac{\mathbf{b}_{m} \cdot v}{\mathbf{b}_{m} \cdot \mathbf{b}_{m}} \mathbf{b}_{m},
 $$

 is independent of the choice of an orthogonal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{m}\right\}$ for W.
 ${ }^{2}$ I intentionally put \mathcal{B} to emphasize that this is the projection using the basis \mathcal{B}.
 ${ }^{3}$ Hint. Use the linearity property of an inder product \cdots and the definition of orthogonality. In order to prove $v-\operatorname{proj}_{W, \mathcal{B}} \in W^{\perp}$, you only need to show that $v-\operatorname{proj}_{W, \mathcal{B}}$ is orthogonal to $\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{m}$.

[^1]: ${ }^{4}$ From a), we have $v-\operatorname{proj}_{W, \mathcal{C}} \in W^{\perp}$.
 ${ }^{5}$ Hint. W^{\perp} is a subspace of \mathbb{R}^{n} (you can use this fact without a proof) so that W^{\perp} is closed under addition and scalar multiplication.

